
SHORT COMMUNICATION

Selective FL Quenching or Enhancing of Diimine Ligands
by Guanine

Srung Smanmoo & Shinya Kawasaki &
Pramuan Tangboriboonrat & Takayuki Shibata &

Tsutomu Kabashima & Masaaki Kai

Received: 3 September 2012 /Accepted: 1 April 2013 /Published online: 25 April 2013
# Springer Science+Business Media New York 2013

Abstract Diimine ligand (DL) 1 significantly exhibited the
fluorescence quenching upon binding to guanine. Changing
at the para-substituent of the phenyl ring from the hydroxyl
to bromo groups reversely enhanced the fluorescence in the
presence of guanine. The reverse in the fluorescence selec-
tivity indicated the profound effect of the substituent at the
para-position of the phenyl ring. The simple synthesis of
DL 1 and DL 2 with good selectivity for guanine offers
these DLs as promising compounds for chemosensors of
other guanine derivatives.
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Introduction

Molecular recognition is the term defined as the recogni-
tion between host and guest molecules by noncovalent
bonding, e.g., hydrogen bonding, metal coordination and
hydrophobic forces [1–4]. In biological systems, molecular

recognition plays a number of important roles [5–7]. For
example, the recognition between antibiotic vancomycin
and a bacterial peptide, D-alanyl-D-alanine [8]. Recently,
Zou et al. has demonstrated the molecular recognition
between Puerarin to human serum albumin (HSA) using
fluorescence spectroscopy [9]. The recognition of Puerarin
by HSA is the result of the combination between a hydro-
gen bonding and an electrostatic interaction.

Supramolecular system is the artificial molecular recog-
nition. The combination between the molecular recogni-
tion part (ionophore) and the fluorophore is highly desired
for the development of highly sensitive and selective
chemosensor. Changing the physical properties of host
molecules upon binding of guests utilizes chemosensor
as one of the powerful tools in analytical researches
[10–14]. The most renowned host in supramolecular sys-
tem is crown ether. Crown ether and its derivatives have a
high selectivity and specificity to cations depending on the
size, type and number of heteroatom present in their
structure [15–18]. 15-Crown-5-anthracene has recently
been developed for selective recognition of cesium ion
[19]. Upon the binding to different concentrations of
cesium ions, the fluorescence enhancement of 15-crown-
5-anthracene is observed. When one of the oxygen atom
in this crown ether is replaced by a nitrogen atom, the
selectivity favors barium ion [20].

The detection of the nitrogenous bases is highly desirable
because of their significance in medical and biological im-
plications [21–24]. Recently, Jang et al. has demonstrated
the first example of adenine recognition by diimine ligand
(DL) [25]. Among other nitrogenous bases, the correspond-
ing DL exhibited a good degree of selectivity to adenine.
Upon the binding of adenine to the corresponding DL, the
fluorescence (FL) was enhanced. The molecular recognition
of adenine by DL via the hydrogen bonding inside the
ligand’s pocket is suggested.

S. Smanmoo (*)
Bioresources Research Unit, National Center for Genetic
Engineering and Biotechnology (BIOTEC), 113 Thailand Science
Park, Phaholyothin Road,
Klong Luang, Pathumthani 12120, Thailand
e-mail: srung.sma@biotec.or.th

S. Kawasaki : T. Shibata : T. Kabashima :M. Kai (*)
Graduate School of Pharmaceutical Sciences, Faculty of
Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi,
Nagasaki 852-8521, Japan
e-mail: ms-kai@nagasaki-u.ac.jp

P. Tangboriboonrat
Department of Chemistry, Faculty of Science, Mahidol University,
Rama 6 Road, Phyathai,
Bangkok 10400, Thailand

J Fluoresc (2013) 23:853–857
DOI 10.1007/s10895-013-1216-8



We demonstrated the simple method for the FL de-
tection of guanine with DLs. The guanine detection is
based on the fluorescence quenching or enhancing of
DLs. by guanine. The changing at the para-substituent
of phenyl rings had a profound effect in FL selectivity.
DL 1 exhibited a significant degree of fluorescence
quenching upon binding to guanine while the fluores-
cence intensity of DL 2 is enhanced in the presence of
guanine. Guanine titration experiments indicated the
binding ratio of guanine to DLs 1 and 2 are to be 1:1
with a high binding constant. The recognition of gua-
nine by DLs 1 and 2 is based on hydrogen bonding
between diimine nitrogens and NH groups of guanine.

Experimental Section

Apparatus

Fluorescence measurements were carried out using a FP-
6300 spectrofluorometer (JASCO) equipped with a xenon
lamp source and a 1.0-cm quartz cell, and the scan speed
was 600 nm min−1. 1H spectrum was recorded on Bruker
DPX 400 MHz spectrometer in CDCl3 using TMS as the
internal standard. Mass spectra were recorded on Bruker
Esquire and Finnigan MAT INCOS 50 mass spectrometers.

Reagents

All reagents for the synthesis of diimine ligand phos-
phates obtained commercially were used without further
purification. The corresponding nitrogenous bases (ade-
nine, guanine, thymine, cytosine and uracil) used in this
study were purchased from Sigma Aldrich (USA) and
used without further purification. Methanol was used as a
HPLC grade. All other chemicals used were supplied
from Sigma Aldrich (USA) as analytical grade and used
without further purification. MilliQ water was used
throughout this study. The concentration of stock solu-
tion of metal ions was 1 mM. DL 2 was prepared
according to the literature [26].

Synthesis of 4,4′-[1,2-Phenylenebis(nitrilomethylidene)]bis-
phenol (DL 1)

DL 1 was synthesized from the condensation between a
corresponding 4-hydroxybenzaldehyde (1 mmol) and o-
phenylenediamine (1 mmol) in the presence of distilled
water (10 mL). After the reaction mixture was left stirring
for 6 h, the crude solid was collected by filtration and
crystallized from methanol to obtain the final product in
good yields. DL2 was obtained as white crystals (2.40 g,
82 %). 1H NMR (DMSO-d6) δH 8.94 (s, 2H), 7.67 (d, 2H),

7.46 (m, 4H), 7.41 (m, 4H), 6.97 (m, 4H). 13C NMR δ
117.6, 119.1, 119.4, 119.8, 127.9, 132.5, 133.5, 142.6,
161.5, 163.8. MS (ESI) [M+H]+ 317.35.

Results and Discussion

DLs 1 and 2 were prepared according to the literature
procedure and obtained in good yields (89 % and 92 %)
(Fig. 1) [12, 26]. Although, DL 1 and DL 2 dissolved in
various organic solvents, methanol was chosen as a solvent
system. When excited at 310 nm, DL 1 was shown with the
maximum fluorescence emission at 355 nm while DL 2
emitted the fluorescence at 350 nm. The fluorescence spec-
tra of DLs 1 and 2 were recorded at 2.5×10−6 M concentra-
tion in MeOH:H2O (10:90, v/v).

The recognition of other nitrogenous bases was then
investigated. Five nitrogenous bases (adenine, guanine,
cytosine, thymine and uracil) were screened in the pres-
ence and absence of DLs 1 and 2. As expected, no FL
emission was observed for all nitrogenous bases. In the
presence of DL 1, adenine, cytosine, thymine and uracil
slightly quenched the fluorescence emission intensity of
DL 1. Interesting, there was a significant FL quenching of
DL 1 when guanine was added. It was clear that guanine
exhibited a good selectivity for the FL quenching of DL 1
(Fig. 2a). Next, same set of nitrogenous bases were in-
vestigated. This time, adenine, cytosine, thymine and ura-
cil slightly quenched the FL intensity of DL 2. However,
in the presence of guanine, the fluorescence emission
intensity of DL 2 was significantly enhanced. Therefore,
DL 2 confers a good selectivity for the FL enhancement
in the presence of guanine. These results indicated the
determining roles of para-substituents of DLs’ phenyl
rings for the fluorescence selectivity.

To confirm the FL quenching and enhancing of DLs 1
and 2 by guanine, the fluorescence ratio (I-I0)/I0 was deter-
mined (Fig. 3). From Fig. 3, the high selectivity for FL
quenching by guanine was clearly observed for DL 1. In
the presence of other nitrogenous bases, no significant de-
gree of FL quenching for DL 1 was observed (Fig. 3a). DL 2
exhibited the significant FL enhancing effect upon binding
to guanine and showed less response to other nitrogenous
bases (Fig. 3b).

NN

HO OH

NN

Br Br
DL 1 DL 2

Fig. 1 DLs 1 and 2
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The recognition of guanine by DLs 1 and 2 is suggested
to occur via the hydrogen bonding between the diimine
nitrogens and the NH groups of guanine (Fig. 4). Un-
like the Jang’s binding model, the hydrogen bonding for
DLs 1 and 2 is only from the diimine nitrogens of DLs
and the NH groups of guanine [12, 25]. The participa-
tion of the hydrogen bonding between the NH groups of
guanine and the hydroxyl groups at the para-position of
the phenyl rings is unlikely to occur as they are to far
for the interaction.

Next the fluorescence titrations of DLs 1 and 2 by
guanine were carried out. When 1 equiv of guanine was
added to the DL 1 solution, a significant FL quenching
was observed as shown in Fig. 5a. Increasing the gua-
nine concentration did not induce a significant quenching
of DL 1. The change of FL quenching after the addition
of 1 equiv of guanine to DL 1 indicated the critical
molar ratio of 1:1 between DL 1 and guanine. As
expected, in the presence of guanine, the fluorescence
of DL 2 was significantly enhanced. The FL enhance-
ment of DL 2 was noticed when 1 equiv of guanine was
added. Further addition of guanine slightly improved the
FL enhancement of DL 2. The saturation for the FL
enhancement of DL 2 was observed after 1 equiv gua-
nine was added (Fig. 5b). Therefore, the molar ratio (1:1)

between DLs 1 or 2 and guanine was the same. The
molar ratio was confirmed by plotting the change of
fluorescence intensity against the molar ratio between
guanine and DLs. It was obvious that a significant
change in the difference of fluorescence intensity was
detected at a 1:1 ratio between guanine and DLs
(Fig. 6). Beyond this ratio, there was no further change
of fluorescence intensity. This 2 indicated the same
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Fig. 2 a Changes in fluorescence emission intensity of DL 1 (2.5×
10−6 M) and b changes in fluorescence emission intensity of DL 2
(2.5×10−6 M) upon the addition of 1 equiv of different nitrogenous
bases (Adenine, Guanine, Cytosine, Thymine and Uracil) in MeOH:
H2O (10:90, v/v) with the excitation at 310 nm
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Fig. 3 Fluorescence ratio (I-I0/I0) of a DL 1 (2.5×10−6 M) and b DL 2
(2.5×10−6 M) upon the addition of 1 equiv of different nitrogenous
bases in MeOH:H2O (10:90; v/v)

Fig. 4 MM2 energy-optimized complexes (MacroModel 7.1, MM2*
force field) [27] of DL 1·Guanine and DL 2·Guanine
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mode of binding between DLs 1 and 2 to guanine [25].
The FL enhancement of DL 2 by guanine was also
suggested by Jang et al. [25]. The increasing of FL
intensity upon the increasing concentration of guanine
indicates the rigidity of the conformational complexes
formed between guanine and DL 2. The rigidity of the
complex prohibits the non-radiative decay from the
excited state which results in increasing of the FL
intensity.

It is interesting that whether the presence of other
nitrogenous bases could disturb the effects of FL
quenching or enhancing of DLs 1 and 2 by guanine,
the interference was subsequently investigated. As
shown in Fig. 7, no interference of the FL quenching
of DL 1 by guanine was observed in the presence of
other nitrogenous bases. The FL quenching of DL 1 by
guanine was the same either in the absence or presence
of other nitrogenous bases.

The similar result was observed for DL 2, i.e., the
presence or absence of other nitrogenous bases had no
effect for the FL enhancement of DL 2 by guanine.
Therefore, it was clear that DLs 1 and 2 exhibited a
very good selectivity for guanine. The presence of other
nitrogenous bases did not affect the FL quenching or
enhancing of DLs by guanine.

Conclusion

In conclusion, DLs 1 and 2 were the first-time evaluated
as promising selective chemosensors for the FL sensing
of nitrogenous base, guanine. The complex formation
constants (log K) of DLs 1 and 2 showed with the high
affinity to guanine (5.68 and 5.54 for DL 1 and 2,
respectively) [27]. The detection limit by these DLs is
as low as 1×10−6 M. The mode of recognition for
guanine by DLs 1 and 2 was suggested to be similar
to what is observed by Jang et al. [25]. which DLs’s
diimine nitrogens and NH groups of guanine play a
determining role for this recognition. The selectivity of
FL is dependent on para-substituents of the DLs’ phenyl
rings. Changing the para-subtituents from hydroxyl to
bromo groups reverses the FL selectivity from quenching
to the enhancement. The role of the substituents at this
position is currently being investigated. The binding ratio
between DLs 1 and 2 with guanine was determined to be
1:1 which is similarly observed by Jang et al. The simple
synthesis of DLs and a high selectivity for guanine offer
these DLs as promising chemosensors for further devel-
opment for FL sensing other guanine derivatives.
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Fig. 5 Fluorescence spectra changes of a DL 1 and b DL 2 upon the
addition of guanine excited at 310 nm in MeOH:H2O (10:90; v/v).
[DL]=2.5×10−6 M
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Fig. 6 Fluorescence titration curves ([Guanine]/[DL]) vs change in FL
emission (λex=310 nm) in MeOH:H2O (10:90; v/v). [DL]=2.5×
10−6 M
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